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Abstract. We perform a detailed analysis of the total inelastic cross-section for γ∗γ∗ collisions. Different
contributions coming from the quark box diagram, reggeons, the soft and hard pomeron are included. The
QCD pomeron contribution contains a dominant part of subleading effects which reduces its intercept and
delays the onset of the asymptotic pomeron to high energies. Estimates of the cross-section for doubly-
tagged e+e− → e+e−hadrons events are presented and compared with the existing LEP data. Good
agreement between the theoretical results and the experimental data is found. We also comment on the
extraction of the BFKL pomeron intercept from the available LEP measurements.

1 Introduction

The study of high energy limit of perturbative QCD is
very interesting both theoretically and phenomenologi-
cally. The leading asymptotic behaviour of (semi)hard
processes is described by the perturbative pomeron which
is generated by the ladder diagrams with the reggeised
gluon exchange along the chain. The summation is car-
ried out by the celebrated Balitzkij-Fadin-Kuraev-Lipatov
equation [1,2]. Although the basic structure of the BFKL
pomeron is fairly well understood there are still some the-
oretical problems which have to be treated with care and
are not entirely solved as yet. Thus the QCD pomeron is
known to acquire important subleading corrections [3,4].
In particular the recently computed NLL corrections to
the BFKL pomeron intercept are found to dominate over
the leading result already at small values of the strong
coupling constant αs ∼ 0.1 that invalidates the perturba-
tive expansion for this quantity. Thus the resumation of
the perturbative series is necessary in order to cure this
problem [5–8]. Two related approximate approaches have
proved to be particularly useful for this purpose: imposing
the so-called consistency constraint [7], which follows from
the requirement of restricting the gluon kinematics to the
quasi-multiregge limit and the other proposed in [6] which
combines the leading and subleading BFKL effects with
the renormalisation group constraints. Another problem
is related to the fact that in the BFKL gluonic ladders
the gluon virtualities are not restricted to the hard do-
main even if the ladder is coupled to hard objects. This is
caused by the diffusion of the gluon transverse momenta
towards the infrared region which is in fact enhanced when
the running of the coupling constant in the BFKL kernel
is taken into account [9]. However, it was shown [10] that

the BFKL amplitude can be still factorized into the hard
and soft part(s).

One of the most promising measurements which can
probe the BFKL pomeron is the determination of the to-
tal cross-section for hadronic production in the interac-
tion of two virtual photons at high energies [11–18]. If
the virtualities of the photons are large and comparable,
the process is fully perturbative and moreover pure LO
DGLAP evolution effects are suppresed due to short evo-
lution length, leaving a room for the genuine BFKL con-
tribution to the cross-section. These conditions seem to
be realized in the experiments measuring the cross-sec-
tion for doubly tagged e+e− events at LEP1 and LEP2
[19,20]. The main purpose of our paper is to analyze the
available LEP data in respect to the information about
the hard pomeron that it contains. This of course requires
detailed treatment of other competing mechanisms, like
the quark box diagram contribution, the exchange of the
soft pomeron and of the reggeons. Similar analysis has
been performed in [13] where the hard pomeron term was
treated phenomenologically. The novel feature of our ap-
proach is the fact that the BFKL pomeron contribution
is estimated directly from the exact (numerical) solution
of the BFKL equation with the subleading effects gener-
ated by the consistency constraint taken into account. In
this way we do not restrict ourselves to the asymptotic
form of the hard QCD pomeron contribution to the γ∗γ∗
cross-section. It has been shown in [18] that this asymp-
totic form is expected to be delayed to high energies. It
is therefore mandatory in the phenomenological analysis
of experimental data to disentangle the threshold effects
from asymptotic power-like increase of the cross-sections
with increasing energy.
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The content of our paper is as follows: in the next
Section we recall the basic formulas connecting the process
e+ e− → e+ e− + hadrons with the cross-section for
hadron production in γ∗γ∗ collisions, in Sect. 3 we discuss
the “background” to the QCD pomeron contribution to
the total γ∗γ∗ cross-section, i.e. the quark parton model,
soft pomeron and reggeon contributions while the QCD
pomeron contribution is discussed in Sect. 4. In Sect. 5 we
present comparison of our predictions with experimental
data from LEP and in Sect. 6 we summarise our results.

2 Doubly tagged events

In the equivalent photon approximation the differential
cross-section of the process e+e− → e+e−+hadrons (aver-
aged over the angle φ between the lepton scattering planes
in the frame in which the virtual photons are aligned along
the z axis) is given by the following formula [11]:
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In (1) y1 and y2 are the longitudinal momentum fractions
of the parent leptons carried by virtual photons, Q2

i =−q2i (i = 1, 2) where q1,2 denote the four momenta of the
virtual photons and W 2 is the total CM energy squared
of the two (virtual) photon system, i.e. W 2 = (q1 + q2)2.
The cross-sections σij

γ∗γ∗(Q2
1, Q

2
2,W

2) are the total cross-
sections of the process γ∗γ∗ → hadrons and the indices
i, j = T,L denote the polarization of the virtual photons.
The functions P (T )

γ/e (y) and P
(L)
γ/e(y) are the transverse and

longitudinal photon flux factors.
The conditions provided by LEP detectors offer the

opportunity to measure both the scattered electrons at the
small angle θ falling in the range of about 30 to 70 mrad.
This corresponds to the virtualities of colliding photons:
Q2

i = 4(1 − yi)E2
beam tan

2(θi/2). Since, typically yi � 1
in such measurements the region of Q2 equal to a few
GeV2 is probed at LEP1 and above 10 GeV2 at LEP2.
Due to rather low statistics for the doubly tagged events
one focuses usually on a more inclusive quantity then (1),
namely on
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where the function C(Q2
1, Q

2
2, y1, y2) denotes the experi-

mental cuts.

3 The background processes

In the high Y and high Q2
i limit the dominant contri-

bution to σij
γ∗γ∗ comes from the hard pomeron exchange.

However for non-asymptotic energies and virtualities the
contribution of other mechanisms has to be included. So,
when Y is not large enough the quark box diagram contri-
bution is important for all virtualities. It becomes small
for high values of W decreasing as 1/W 2 (modulo log-
arithmic effects) in this limit. On the other hand, at low
Q2 non-perturbative phenomena i.e. the soft pomeron and
for not too large values of W also the reggeon exchange
are important. We shall analyze these components of the
cross-section in more detail.

3.1 The quark box contribution

The quark box (or QPM) contribution to the total γ∗γ∗
cross-sections can at the leading order be calculated ex-
actly and the result is given for instance in [21]. The im-
pact of the QCD corrections on the result has been shown
to be small [22,23]. There appears some uncertainty due
to the choice of the quark masses. To be precise, the quark
mass enters the result in two ways – through the virtual
quark propagators, where it would be suitable to use the
running quark mass at the large scaleW 2 and through the
wave function and kinematics of the “on-mass-shell” pro-
duced quarks, where the pole mass should rather be used.
It is not clear how to take into account both requirements
simultaneously so usually one set of masses is used ev-
erywhere. The discrepancy for the two possible choices is
however small for photons with virtualities above 1 GeV2.
We have chosen mu = md = ms = 0 and mc = 1.2 GeV.
The b quark contribution is negligible due to kinematical
effects and the low electric charge.

3.2 The soft pomeron

In our approach the soft pomeron represents the contri-
bution to the high energy amplitude coming from the ex-
change of gluons with their virtualities being in the non-
perturbative domain. Since for such configurations the
perturbative formalism does not apply we parametrize the
corresponding contribution using the Regge model. Thus
we employ the Donnachie-Landshoff parametrization of
the soft pomeron contribution to the γ∗(Q2)p cross-sec-
tion, and using the Gribov factorisation hypothesis we
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find that the soft pomeron exchange gives the following
component of the γ∗(Q2
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where σSP
γ∗p and σ

SP
pp denote the soft pomeron contribu-

tions to the γ∗p and pp total cross-sections respectively.
Assuming that the soft pomeron contribution to γ∗p total
cross-section should exhibit Bjorken scaling at large Q2

we find:
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where ε = αSP − 1 with αSP denoting the soft pomeron
intercept (αSP ≈ 1.08). We also have:
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with W0 = 1 GeV. From (5, 6) and (7)we get:
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The characteristic feature of the soft pomeron contribu-
tion to the total γ∗γ∗ cross-section is its rapid decrease
with increasing virtualities. It follows from (8) that for
large characteristic scale Q2 for both photons (Q2

1 ∼ Q2
2 ∼

Q2), σSP (Q2, Q2,W 2) decreases as 1/Q4+2ε ∼ 1/Q4 (for
fixed W 2/Q2) in contrast to the perturbative QCD
pomeron contribution which has only the 1/Q2 behaviour
(modulo logarithmic modifications). The soft pomeron
contribution should therefore be negligible at large Q2.

For the numerical calculations we have used the follow-
ing Donnachie-Landshoff parameterizations of σSP

γ∗p(Q
2,

W 2) and σSP
pp (W

2) [26,27]:
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and
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where A1 = 0.324, a1 = 0.562 GeV2, ε = 0.0808, W0 =
1 GeV, σ0 = 21.7 mb.

3.3 The reggeons

Exchange of the reggeons (e.g. a0) is another non-pertur-
bative phenomenon which can be described in terms of an
isolated Regge pole. The phenomenological analysis of the
total hadronic and photoproduction cross-sections (as well
as of the γ∗p total cross-section) shows that it is character-
ized by the Regge intercept close to 1/2, yielding there-
fore the γ∗p cross-sections behaving approximately like
1/Q2(W 2/Q2)−0.5. Its contribution to the γ∗γ∗ cross-sec-
tions may be obtained from the Regge pole contribution to

the γ∗p, pp and pp̄ cross-sections using the Gribov factor-
ization formula analogous to (5). It has to be remembered
however that only the C-even reggeons contribute to the
total γ∗γ∗ cross-section, thus we should average over the
reggeon contribution to pp and pp̄ cross-section in order to
find the proton effective coupling to the relevant reggeons.
For fixed W , the reggeon contribution to the γ∗γ∗ total
cross-section has similar dependence on the photon virtu-
ality as the perturbative QCD contribution. The reggeon
part of the cross-section decreases with increasing energy
approximately like 1/W . We have used the following for-
mula [13] for estimating this component:
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with A2 = 0.38, a2 = 0.3 GeV2 and η = 0.45.

4 The QCD pomeron

The hard QCD pomeron is represented by the resummed
series of perturbative gluonic ladders which in the lead-
ing logarithmic approximation is described by the BFKL
equation. In order to take into account (in an approximate
way) the non-leading corrections to the BFKL kernel we
use the running coupling constant along the gluonic ladder
and the consistency constraint (CC) which follows from
the assumption that the virtuality of the gluons exchanged
along the ladder is dominated by their transverse mo-
menta squared [7]. The consistency constraint was shown
to introduce at the NLL approximation a correction to
the pomeron intercept saturating about 70% of the ex-
act NLL result and the collinear limit of the kernel with
this constraint is consistent with the requirements of the
renormalisation group. At least a part of the remaininig
correction may be atributed to the running of the coupling
constant. Therefore the LO BFKL equation with CC and
running coupling constant may be thought of as a simpli-
fied model for providing the resummation of leading and
subleading BFKL effects. Certainly, the BFKL equation
constructed in the framework of perturbative QCD can-
not hold when the gluons become too soft. In order to
eliminate the contribution from the non-perturbative re-
gion we impose a cut-off on the virtualities k2 of gluons
propagating along the ladder: k2 > k20 = 1 GeV2. This
cut-off reflects the fact that a colour-charge cannot prop-
agate freely in the QCD vacuum and its progator has a
finite correlation length. The contribution from the non-
perturbative region is treated phenomenologically, i.e. it is
assummed to give the separate soft pomeron component
of the cross-section which was discussed in the previous
section.

The consistency constraint restricts the available
phase-space for the emissions of real gluons — thus sup-
pressing the radiation. The most important consequence is
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reduction of the pomeron intercept. However it also inter-
locks the longitudinal and transverse components of the
gluon momenta. This makes it possible to define an en-
ergy scale for the onset of the Regge regime, since the
distribution of the transverse gluon momenta has a natu-
ral characteristic scale.

In order to estimate the contribution of the QCD
pomeron it is convenient, following our previous treatment
in [18], to introduce the unintegrated gluon distributions
Φi(k2, Q2, xg) in the virtual photon of virtuality Q2 where
k2 and xg denote the gluon transverse momentum squared
and the longitudinal momentum fraction of the parent vir-
tual photon carried by the gluon respectively. The index i
corresponds to the transverse or longitudinal polarisation
of the virtual photon. The unintegrated gluon distribu-
tion Φi(k2, Q2, xg) satisfies the (modified) BFKL equation
which reads:

Φi(k2, Q2, xg)

= Φ0
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where the function Θ
(
k2 x′

xg
− k′2

)
reflects the consistency

constraint. The inhomogeneous term Φ0
i (k

2, Q2, xg) corre-
sponds to the quark box and crossed box contribution to
the unintegrated gluon distribution in the photon and the
term ΦS(k2, Q2, xg)δiT corresponds to the soft pomeron
contribution to this distribution. The detailed definition
of those two functions is given in [18].

The QCD pomeron contribution to the γ∗γ∗ total
cross-sections σij
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formula:
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The impact factors G0j
q (k

2, Q2
2, ξ) are defined in [18]. The

increase of the function Φi(k2, Q2
1, xg) with decreasing xg

which follows from the BFKL equation, generates increase
of the cross-section σγ∗γ∗(Q2

1, Q
2
2,W

2) with increasing
W 2. This is implied by the fact that xg ∼ x (cf. (13)).

Let us recall that in the conventional leading log(1/x)
approximation we should set Φ0

i (k
2, Q2, xg = 0) in place of

Φ0
i (k

2, Q2, xg) in the BFKL equation (12). It is also legit-
imate in this approximation to set just x instead of xξ as
the argument of Φi in (13) and neglect all phase space lim-
itations constraining integrations over dξ and dk2. These
approximations lead to the following approximate expres-
sion for the γ∗γ∗ cross-sections:
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where the function Φ̄i(k2, Q2
1, x) corresponds to the solu-

tion of the BFKL equation with the inhomogeneous term
equal to Φ0

i (k
2, Q2, xg = 0) instead of Φ0

i (k
2, Q2, xg). It

should be emphasised that formula (13), which our es-
timate of the QCD pomeron contribution is based upon
contains important kinematical effects which are missing
in its approximate asymptotic form (17). First of all (13)
includes the phase space effects generated by the kine-
matical limits constraining integrations over dξ and dk2.
Moreover we do also keep xg dependence in the impact
factors Φ0

i (k
2, Q2, xg) defining the inhomogeneous term of

the BFKL equation. The variable xg is limited from be-
low by x. It provides a kinematical lower bound for the
longitudinal momentum fraction zq of the quark emitting
the gluon in the quark box diagram defining the impact
factors Φ0

i (k
2, Q2, xg), i.e. zq > xg > x [18]. By keeping

the xg dependence of the impact factors Φ0
i (k

2, Q2, xg) we
generate corrections to their asymptotic form in the limit
xg → 0 which are subleading (have an additional factor of
xg) but non-negligible even for low values of xg.

These effects, i.e. the phase-space limitations in (13)
and the xg dependence of the impact factors Φ0

i (k
2, Q2, xg)

delay the onset of the asymptotic (power-like) behaviour
of the total cross-sections. They also introduce an ad-
ditional energy dependence of the cross-sections in the
low W region which is essentially of kinematical origin.
In particular, they are entirely responsible for generating
sub-asymptotic energy dependence of the Born term (i.e.
given by the two gluon exchange) which in the high energy
limit gives the constant cross-section (see Fig. 1). Finally,
it is worthwile to note that such threshold effects may
be misidentified as the asymptotic, power-like rise of the
cross-section giving too high value of the pomeron inter-
cept.

It follows from our previous analysis [18] of the QCD
pomeron contribution to γ∗γ∗ total cross-section(s) that
the resulting pomeron intercept equals about 0.35 whereas
the asymptotic, power-like behaviour is reached roughly
when W 2 > 20 Q1Q2 (see Fig. 1). In terms of the com-
monly used variable Y this means that we should expect
the power-like rise of the cross-section to start only at
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2) for the process γ∗(Q2
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2) → hadrons for
various choices of photon virtualitities Q2 = Q2
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2: Com-

parison of the complete contribution of the perturbative QCD
pomeron to the cross-section σTT

γ∗γ∗(Q2, Q2, W 2) (continous
line) with its Born term component corresponding to the two
gluon exchange mechanism (dotted line). The figure from [18]

Y > 3 and giving a substantial effect for Y > 5. Such
effect seems to appear in the recent L3 data [19].

The definition of the impact factors is straightforward
in the leading order approximation of perturbative QCD
in which they are given by the quark box diagrams con-
tribution. In this approximation the impact factors are
proportional to Φ0

i (k
2, Q2, xg = 0). However the leading

order expressions may be affected by the possibly impor-
tant subleading corrections which are not known yet1,2.
Thus the non-leading corrections introduce some uncer-
tainty into our result. Besides that the value of the scale
for the running strong coupling constant describing the in-
teraction between quarks and gluons is ambigous. In fact
both these problems are related and an improvement here
can only be achieved when the non-leading corrections to
the impact-factors become known. A natural choice for the
scale µ2 of the running coupling constant αs(µ2) would be
the virtuality of the interacting gluon k2 (k2 > 0), possi-
bly combined with the relevant quark mass mq squared:
µ2 = k2 + m2

q. However, because there is some freedom
left here one may use also an alternative choice of µ2,
e.g. µ2 = (k2 + m2

q)/4 in order to check the uncertainty
of the prediction and possibly find an experimental hint
on the proper choice of the scale. These uncertainties do

1 In our framework we take into account a part of the sub-
leading corrections which are of the kinematical origin

2 The calculation of the NLO corrections to the impact fac-
tors is in progress [28]

only affect normalisation of the cross-sections leaving un-
changed their energy dependence. We have confronted the
predictions obtained with the use of both scenarios with
the experimental data from LEP. The lower scale scenario
yields the γ∗γ∗ cross-section two times bigger than that
obtained with the standard choice of µ2 = k2 + m2

q but
still slightly below the data. Thus it is clear that at present
the LEP data favour taking the low scale in the impact
factors. Of course this conclusion may be altered if the
NLO corrections to impact factors turn out to be positive
and large.

5 Comparison with the data

5.1 Do we see the pomeron?

L3 and OPAL collaborations have collected a sample of
data for double tagged events both at the Z0 peak and
for the e+e− between 183 and 202 GeV [19,20]. In Fig. 2
and Fig. 3 we give the comparison between the theoretical
results obtained in the framework of our model and the
data. Our theoretical predictions include all components
of the γ∗γ∗ cross-section discussed in previous sections and
are obtained using formula (4) with L3 and OPAL cuts
and binning respectively. It can be seen that the model
reproduces the experimental results rather well although
we tend to overestimate the L3 data from LEP1 and un-
derestimate those from LEP2. We point out that the hard
pomeron dominates the cross-section for Y > 3.5 − 4 so
this region of Y is particularly interesting. Moreover, in
the LEP1 data the non-perturbative contributions com-
ing from the soft pomeron and the reggeons are still of
considerable importance whereas at LEP2 energies they
become of little relevance. This is fortunate because these
non-perturbatively driven components of the cross-sec-
tion are known with a rather limited accuracy due to er-
rors of fits and some theoretical ambiguities (in particular
the interplay between the soft and hard pomeron). On
the other hand the quark-box contribution is known very
accurately so the uncertainty which is introduced when
subtracting this component from the total cross-section
is small. Therefore the LEP2 data, especially those for
Y > 3.5− 4 carry the most precise information about the
QCD pomeron. It is also in the large Y region where we
expect the significant BFKL enhancement of the cross-
section.

Let us also quote comparisons between the data and
the PHOJET Monte-Carlo program [24] presented by L3
and OPAL. PHOJET contains all the components of the
γ∗γ∗ cross-section but the “hard pomeron” part is de-
cribed there in the framework of DGLAP evolution only
while the BFKL-type effects are neglected. Since the vir-
tualities of both photons are comparable this essentially
corresponds to the two gluon exchange process. Therefore,
if our conclusions are correct, it should work rather well
up to Y = 4. Indeed it does but already for 4 < Y < 6
(at

√
s = 183 GeV) the data published by both LEP

experiments are slightly underestimated and for the L3
measurement at 5 < Y < 7 (at

√
s > 189 GeV) the
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Fig. 2. Comparison of the L3 data [19] on the differential cross-section for doubly tagged events dσ(e+e− → e+e− +
hadrons)/dY with our predictions plotted as function of Y for different e+e− collision energies, corresponding to the mea-
surements by the L3 collaboration. Four different mechanisms contributing to dσ/dY are described in the text

PHOJET prediction of dσ/dY = 30 fb is below the data
(dσ/dYexp = 80±10±10 fb) by more than three standard
deviations. Our result in this bin reads 52 fb being by two
standard deviations below the preliminary experimental
point. However (see Fig. 2) we describe rather well the en-
ergy dependence of the pomeron contribution, perhaps un-
derestimating the overall normalisation of this term. The
OPAL data have larger error bars and cover a smaller re-
gion of Y than the L3 data. So, the tendency reported
by OPAL that dσ/dY (Y ), estimated with the PHOJET

MC, underestimates the central values of the experimental
points at high Y is not yet statistically significant. How-
ever, our model reproduces the OPAL data better, i.e. has
lower χ2, than PHOJET. The data from both experiments
confirm also our prediction that the onset of the power-like
increase of the γ∗γ∗ cross-section is delayed to Y > 3.5.

Let us finally point out the problem with radiative
QED corrections to the double tagged cross-section. It
has been noticed in [20], that if the γ∗γ∗ collision energy
W is obtained directly from a measurement of the kine-
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Fig. 3. Comparison of the OPAL preliminary data [20] on the
differential cross-section for doubly tagged events dσ(e+e− →
e+e− + hadrons)/dY with our predictions plotted as function
of Y for the e+e− collision energies between 189 and 202 GeV

matics of tagged electrons, as done by L3, the estimated
and actual value of W may be different. This discrepancy
is mainly caused by the electromagnetic initial state ra-
diation since the emitted ISR photons which have small
enough virtuality are not seen by the detector. Neverthe-
less they can carry a non-negligible fraction of the lepton
energy, affecting therefore the determination of W based
on the measurement of leptonic four-momenta. This effect
is supressed by a small factor αem/π but after performing
an integration over the photon virtuality giving a large
logarithm, it appears to be sizable [20]. According to our
knowledge the L3 collaboration has not included this im-
portant correction in the analysis. This means that the L3
data, especially for large Y may change, namely dσ/dY
may turn out to be smaller. The OPAL collaboration uses
produced hadronic invariant mass to calculateW and thus
the OPAL data are not affected by such a systematic error.
The consistency between our predictions and the OPAL
data is very good.

5.2 On the determination of the intercept

One of the important aims of the empirical analysis of ex-
perimental data on the reaction e+e− → e+e− + hadrons
with tagged leptons is the determination of the effective
QCD pomeron intercept which describes the high W be-
haviour of the γ∗γ∗ cross-section. In order to extract di-
rectly this cross-section from the experimental results with
doubly tagged events it is necessary to perform a decon-
volution using photon luminosity functions. Furthermore,

one has to subtract the remaining components of the cross-
section. Then the results are usually given as a function
dσγ∗γ∗/dY of the variable Y and the asymptotic form of
the BFKL cross-section

dσγ∗γ∗

dY
∼ 1
Q1Q2

exp[(αP − 1)Y ]√
Y

(18)

is fitted with the pomeron intercept αP being left as a free
parameter.

We would however like to point out that this method
of determining the pomeron intercept may not be correct.
We understand that in the fitting procedure it is usually
assumed that the Q2

i distributions are the same in each
of the Y -bins and do not affect the fits of Y dependence.
However, the variable Y is in fact correlated with Q1Q2
and we may expect the distribution of Q1Q2 to be domi-
nated by the low photon virtualities for high Y bins and
by the high values of the virtualities for low Y . In this case
we would obtain some enhancement of the effective γ∗γ∗
cross-section for high Y due to strong 1/(Q1Q2) depen-
dence of the total cross-section. This effect may imitate
the genuine increase of total cross-sections with increas-
ing W 2. In Fig. 4 we show that such effect indeed occurs.
In this figure we plot the effective cross-sections σ̄TT

γ∗γ∗(Y )
(for the L3 cuts) obtained with different assumptions con-
cerning σTT

γ∗γ∗(W 2, Q2
1, Q

2
2). We used the following defini-

tion of σ̄TT
γ∗γ∗(Y ) (cf. formula (4)):

σ̄TT
γ∗γ∗(Y ) =

{∫
dQ2

1 dQ
2
2 dy1 dy2U(y1, y2, Q

2
1, Q

2
2;Y )

×σTT
γ∗γ∗(W 2, Q2

1, Q
2
2)

}/{∫
dQ2

1 dQ
2
2 dy1

×dy2U(y1, y2, Q2
1, Q

2
2;Y )

}
(19)

where the weight factor U reads

U(y1, y2, Q2
1, Q

2
2;Y )

= C(Q2
1, Q

2
2, y1, y2)

P
(T )
γ/e (y1)

Q2
1

P
(T )
γ/e (y2)

Q2
2

×δ
(
Y − log

(
y1y2s

Q1Q2

))
. (20)

The effective γ∗γ∗ cross-section defined in this way should
directly correspond to the experimental measurements of
σTT

γ∗γ∗(Y ).
The modification of the Y dependence can be seen

at best when looking on the dashed curves which cor-
respond to the asymptotic two-gluon contribution which
gives completely flat W dependence. The different mag-
nitude of photon virtualities in different Y -bins generates
the effective intercept ᾱP ∼ 1.1 at LEP1 conditions and
ᾱP ∼ 1.05 at LEP2. So, the conclusions based on the
simple fits to σ̄γ∗γ∗(Y ) would lead to overestimate of the
intercept, whose true value was αP = 1. This is not a dra-
matic effect but still goes beyond the claimed accuracy
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Fig. 4. Effective γ∗γ∗ cross-section defined by formula (19)
for transverse photons obtained with L3 cuts for two dif-
ferent e+e− energies. Three curves are shown corresponding
to the hard pomeron (continous line), two gluon exchange
(dotted line) and the two gluon exchange in the limit of
asymptotically high energies (dashed line) approximations of
σTT

γ∗γ∗(Q2
1, Q

2
2, W

2)

of the determination of the intercept. A simple remedy
to remove such problems would be to use in the fit the
quantity 〈Q1Q2〉(Y ) σ̄γ∗γ∗(Y ) for the pomeron mediated
part of the total σγ∗γ∗(Y ), instead of σ̄γ∗γ∗(Y ). The fac-
tor 〈Q1Q2〉(Y ) stands for the mean values of Q1Q2 in the
given Y bin. Then the sensitivity to the virtualities should
become substantially reduced.

6 Summary and conclusions

In this paper we have performed a theoretical analysis of
the γ∗γ∗ total cross-section assuming the QCD pomeron
exchange together with the contributions given by the soft
pomeron, the non-pomeron reggeons and by the QPM
term. The QCD pomeron contribution was calculated
from the numerical solution of the modified BFKL equa-
tion in which we have included the dominant subleading
effects generated by the consistency constraint limiting the
available phase space (see (12)). We have also included
phase space effects in the corresponding formula which
conects the total γ∗γ∗ cross-section(s) with the solution
of the BFKL equation (see (13)). These effects delay the
onset of the asymptotic QCD pomeron contribution. The
soft pomeron and non-pomeron reggeon terms were esti-
mated using Gribov factorisation. Our theoretical predic-
tions have been obtained with only one adjustable param-
eter characterizing the energy scale µ2 for the running cou-
pling constant in the impact factors and were found to give
a reasonable description of the experimental data from
LEP. We have found that the soft pomeron and reggeon
contributions are important at LEP1. They are however
less significant at LEP2 over the entire Y range. This is
linked with the fact that the magnitudes of the virtualities
Q2

1,2 which are sampled at LEP2 are larger than those at
LEP1. The QPM contribution is very important for low
values of Y . The region of large values of Y is dominated
by the QCD pomeron contribution. To summarise we have
found that although the QCD pomeron exchange mecha-
nism is important for the description of the LEP data the
other contributions, i.e. QPM and the soft pomeron and
non-pomeron reggeons are non-negligible and should be
included in the analysis. The QCD pomeron should how-
ever give the dominant contribution at energies which will
be probed in future linear e+e− colliders.
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